Exploring Eclipse’s Canonical Ethereum Bridge and Its Advanced Proving System

芝麻开门

芝麻开门(Gateio)

注册芝麻开门享最高$2,800好礼。

币安

币安(Binance)

币安是世界领先的数字货币交易平台,注册领100U。

Eclipse’s Canonical Ethereum Bridge and Proving System consists of three layers: Execution (SVM transaction execution), Settlement (Ethereum-based bridge and fraud proofs), and Data Availability (Celestia for data blobs). The bridge enables deposits, withdrawals, and fraud proofs, leveraging Celestia’s Blobstream for data verification. Fraud proofs ensure correct state transitions by validating transaction inputs and outputs. Eclipse’s design avoids global state trees, using transaction chaining for efficiency. The system includes safeguards against invalid batches, with verifiers able to challenge incorrect commitments. Eclipse’s modular L2 architecture emphasizes trust minimization and scalability.

*Forward the Original Title:Exploring Eclipse’s Canonical Ethereum Bridge and Proving System

An Overview of Our Canonical Bridge

Eclipse’s architecture is built upon three fundamental layers that work in harmony to create a robust blockchain ecosystem. At the execution layer, we’ve implemented a modified version of the Solana Labs client (v1.17) to handle SVM transaction processing. The settlement layer operates through our canonical bridge on Ethereum, which not only determines Eclipse’s fork-choice rule but also serves as the submission point for fraud proofs. Completing this triad is the data availability layer, where Eclipse publishes essential verification data as blobs on Celestia’s decentralized network.

The diagram below illustrates how these modules interact:

Exploring Eclipse's Canonical Ethereum Bridge and Its Advanced Proving System

This article will focus primarily on Eclipse’s Ethereum bridge component. Through Blobstream, Celestia’s validator set relays signed attestations to Ethereum, verifying the proper publication of Eclipse’s slot data batches. This mechanism enables Eclipse’s bridge to cross-check fraud proof data against Celestia’s signed data roots. We’ll explore the complete workflow covering fund deposits through our bridge, the posting of Eclipse block batches as data blobs on Celestia, withdrawal processing, and fraud proof generation in exceptional circumstances.

Depositing via Eclipse’s Native Ethereum Bridge

When users initiate deposits through Eclipse’s native Ethereum bridge, the process unfolds through several coordinated steps. The journey begins when a user interacts with Eclipse’s Deposit Bridge contract on the Ethereum network. Eclipse’s SVM executor then detects this deposit through its relayer system, which monitors both the deposited amount and destination address. The relayer subsequently engages with the SVM bridge program to facilitate the transfer of funds to the intended recipient address.

As an additional security measure, the relayer verifies the deposit transaction using a zk-light client (currently in development). The final step involves the block containing the post-deposit transfer transaction being finalized and published through Solana’s Geyser Plugin mechanism.

The diagram below shows the interactions between Ethereum, Celestia, and the SVM Executor during the deposit flow described above:

Exploring Eclipse's Canonical Ethereum Bridge and Its Advanced Proving System

Publishing Eclipse’s Slots to Celestia as Data Blobs

The process of publishing Eclipse’s slot batches to Celestia begins with the SVM executor transmitting each Eclipse slot to the message queue via the Geyser interface. These slot batches are then formatted and posted to Celestia as data blobs, creating a verifiable record of Eclipse’s blockchain activity. Celestia’s validator set generates cryptographic commitments for these data blobs, enabling transaction inclusion proofs against the published data root. These critical data roots, embedded in every Celestia block header, are then relayed to Eclipse’s bridge contract on Ethereum through Blobstream’s secure channel.

The diagram below from Celestia explains how the commitment of the data within a given Celestia block is stored in the block header:
Exploring Eclipse's Canonical Ethereum Bridge and Its Advanced Proving System

Withdrawing and Submitting Fraud Proofs to Eclipse’s Ethereum Bridge

Similar to other L2 solutions employing fraud proofs (such as Arbitrum and Fuel), Eclipse implements a challenge period for withdrawals to allow for potential fraud proof submissions. The process begins with the SVM executor regularly posting commitments to Eclipse’s slot epochs (comprising predetermined batch quantities) to Ethereum, accompanied by collateral deposits. Eclipse’s bridge contract performs preliminary validation checks on the submitted batch data structure (detailed in the Fraud Proof Design section).

If the batch passes these initial checks, a predefined challenge window opens during which network verifiers can submit fraud proofs if they detect invalid state transitions. Successful fraud proofs result in the verifier claiming the executor’s collateral, rejection of the disputed batch, and reversion of Eclipse’s canonical state to the last valid batch commitment. In such cases, Eclipse’s governance mechanism would initiate the selection of a new executor.

Conversely, if the challenge period concludes without any successful fraud proofs, the executor reclaims its collateral along with a reward. The Eclipse bridge contract then processes all withdrawal transactions included in the now-finalized batch, completing the withdrawal cycle.

Fraud Proof Design

Our fraud proof system draws inspiration from the work of Anatoly Yakovenko and John Adler. The fraud proof mechanism requires verifiers to identify transactions containing invalid state transitions, provide the relevant transaction inputs, and demonstrate how re-executing the transaction with these inputs produces outputs that diverge from the on-chain commitment.

Eclipse’s approach leverages Celestia’s merklization of block batch blobs for transaction inclusion proofs via Merkle witnesses. Unlike EVM-based L2s that maintain a global state tree, Eclipse prioritizes performance by avoiding transaction-by-transaction state tree updates. For output verification, Eclipse’s system generates zk-proofs rather than employing the interactive verification games common in EVM-based solutions.

All Eclipse transactions follow a consistent pattern of consuming input accounts, executing transactions, and producing output accounts:

Exploring Eclipse's Canonical Ethereum Bridge and Its Advanced Proving System

Our fraud proof design hinges on the observation that every input account must originate as an output account from a previous transaction. This allows our system to reference prior transactions rather than requiring Merkle witnesses to a global state tree. This innovative approach introduces new fraud accusation types, including invalid previous transaction references or already-spent input accounts.

Transaction Inputs Posted to Celestia

The data posted to Celestia includes both the original transaction data from the sequencer and execution data from the SVM executor. The execution data contains crucial information such as transaction counts, Celestia namespace locations, account hashes with their originating transaction counts, relevant sysvars with their values and originating transactions, and transaction outcomes (successful outputs or failure indicators).

Batch Commitments Posted to The Ethereum Bridge

Alongside the Celestia data, batch commitments are relayed to the Ethereum contract, including namespace locations for transaction and execution data, plus lists of deposits, withdrawals, and overrides with their associated Eclipse transaction counts.

Criteria for an Invalid Batch

Our system identifies several potential batch invalidity scenarios, ranging from malformed namespace locations to missing execution data or incorrect transaction outputs. The verification process may involve submitting Celestia namespace locations, transaction sequences, or zk-proofs of correct execution (potentially generated through RISC Zero’s Bonsai). The bridge contract automatically detects certain invalid conditions, while others require verifier intervention. When invalid batches are identified, the bridge contract rolls back to the last provably correct commitment while preserving all transaction records.

Parting Thoughts

This overview has provided insights into Eclipse’s trust-minimized Ethereum bridge and our innovative fraud proof design. As our modular L2 solution continues to evolve, we’ll be sharing more technical documentation and articles about various aspects of the Eclipse ecosystem in the coming weeks.

For those interested in participating in the Eclipse Testnet, detailed instructions are available here. We welcome questions and feedback through our Twitter or Discord channels.

Footnotes

[1]: The node which computes the results of SVM transactions and applies the eventual output to Eclipse’s new state

[2]: An operator which passes on-chain events between Ethereum and Eclipse

[3]: Note that the executor, not the sequencer, posts this. If it were included in the data posted by the sequencer, it would add the complication that the sequencer could skip over a count, making it impossible for the executor to do their job correctly. This could be compensated for in the fraud proof design, but it would add extra complexity. A second advantage of having only the executor post the count is that it makes it easy to allow transaction overrides to be posted to Celestia, if desired.

[4]: SVM accounts can be represented with a unique hash. The only way this hash is modified is via a transaction.

[5]: To do this without an excessive amount of hashing, we will run a trace on each executed program to see which parts of each used sysvar are actually accessed. This is possible, but will require modifying Solana’s BPF interpreter.

[6]: This includes data for attempted transactions that failed to execute.

Disclaimer:

  1. This article is reprinted from [[mirror], All copyrights belong to the original author [Eclipse]. If there are objections to this reprint, please contact the Gate Learn team, and they will handle it promptly.
  2. Liability Disclaimer: The views and opinions expressed in this article are solely those of the author and do not constitute any investment advice.
  3. Translations of the article into other languages are done by the Gate Learn team. Unless mentioned, copying, distributing, or plagiarizing the translated articles is prohibited.

声明:文章不代表CHAINTT观点及立场,不构成本平台任何投资建议。投资决策需建立在独立思考之上,本文内容仅供参考,风险 自担!转载请注明出处:https://www.chaintt.cn/12088.html

CHAINTT的头像CHAINTT
上一篇 2025年7月20日 下午7:47
下一篇 2025年7月20日 下午8:23

相关推荐

  • 区块链加密市场热门概念深度解析

    本文探讨了2023-2024年加密市场七大主流概念:AI(市值77亿美元)、Meme币(600亿美元)、RWA(70亿美元)、DeFi(920亿美元)、L2(280亿美元)、P2E(150亿美元)和DePIN(280亿美元)。分析指出,牛市期间概念选择对项目成功至关重要,AI与加密技术的结合、Meme币的高风险高回报特性、RWA的传统金融整合潜力等成为关键趋势。数据显示DeFi仍占据主导地位,而L2解决方案和GameFi正迎来新一轮发展机遇。

    2025年9月27日
    9200
  • Milkyway成为模块化生态系统的质押中心 优势与未来发展

    Milkyway 是首个模块化质押门户,提供流动性质押和再质押解决方案,旨在简化质押体验并释放区块链模块化潜力。该平台由 JayB Kim 开发,2023年12月推出,率先为 Celestia 生态系统提供流动性质押服务,用户质押 TIA 可获得 milkTIA 代币用于 DeFi 活动。其技术架构融合 CosmWasm 智能合约、多重签名系统和 Cosmos SDK 的 authz 模块,确保安全性和可扩展性。Milkyway 已完成500万美元种子轮融资,计划推出治理代币 MILK,并与 Initia 合作增强模块化安全性,未来发展前景广阔。

    2025年9月3日
    11700
  • 修复以太坊完整性的关键方法与步骤

    以太坊转向以Rollup为中心的路线图提升了交易速度和吞吐量,但引发L2碎片化、流动性分散及中心化排序器风险。EIP-4844升级后,Optimism等L2利润率激增,却导致L1收入下降。共享排序层和基于Rollup方案(如预确认机制)试图解决这些问题,通过以太坊验证者集实现去中心化排序,增强跨链可组合性。然而,构建者垄断、MEV分配及协议复杂性仍是挑战,需平衡L1-L2经济利益以维持生态安全与用户体验。

    2025年8月13日
    8400
  • Kraken推出永续合约,简化散户加密货币交易

    Kraken推出永续合约产品Kraken Perps,支持散户以美元抵押进行加密货币价格投机,无到期日限制并提供止损保护。同时扩展了代币化股票服务xStocks,覆盖欧盟用户并提供60多种美股及ETF交易,交易量已超35亿美元。该平台持续融合传统金融与区块链服务。

    2025年9月12日
    5800
  • 探索区块链数据可用性层的关键作用与重要性

    数据可用性层:模块化区块链的关键组件 数据可用性层作为模块化架构的核心组件,通过数据可用性采样(DAS)技术大幅降低验证成本(最高达99%),解决了传统区块链全节点下载所有数据导致的效率低下问题。主流方案包括Avail(KZG承诺+纠删码)、Celestia(欺诈证明)和EigenDA(基于以太坊智能合约),在技术架构、安全模型和生态系统适配性上各有侧重。这些方案将推动Rollup链爆发式增长,并通过统一数据层提升跨链互操作性,成为未来区块链扩展性解决方案的基础设施。

    2025年7月9日
    7000

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

风险提示:防范以"数字货币""区块链"名义进行非法集资的风险