FHEML全同态加密机器学习是什么 区块链技术如何应用

芝麻开门

芝麻开门(Gateio)

注册芝麻开门享最高$2,800好礼。

币安

币安(Binance)

币安是世界领先的数字货币交易平台,注册领100U。

FHEML技术摘要 完全同态加密(FHE)支持对加密数据直接进行计算,结果解密后与明文计算一致。FHEML结合FHE与机器学习,能在加密数据上执行训练和推理,保护数据隐私。主要分为三类加密方案:SHE(有限运算)、FHE(无限运算)和部分HE(单一运算)。现有工具包括Zama的Concrete-ml(支持Python转FHE电路)、OpenMined的TenSEAL(神经网络张量加密)和TF Encrypted(TensorFlow加密生态)。核心应用场景涵盖外包计算、加密推理和加密训练,在医疗、金融等敏感领域具有重要价值,实现了”数据可用不可见”的隐私计算范式。

深入理解完全同态加密(FHE)

完全同态加密(FHE)作为一类创新的加密技术,其核心价值在于能够对加密数据进行有效计算。这项技术的独特之处在于,当对加密数据进行计算后解密得到的结果,与直接在原始数据上执行相同计算的结果完全一致。

通过同态加密函数fenc的处理,数据在加密状态下依然能够保持其计算特性。这种加密空间中的计算属性保留,使得FHE技术在隐私保护计算领域具有独特优势。

在FHE技术体系中,主要包含三种加密方案:某种同态加密(SHE)支持有限的加法和乘法运算;完全同态加密(FHE)则允许对密文进行任意次数的运算而不影响解密结果;而部分同态加密仅支持单一类型的运算。

FHE在机器学习领域的早期探索

将完全同态加密应用于机器学习的研究为隐私保护计算开辟了新方向。Lauter在2021年的研究中详细阐述了如何将同态加密与人工智能相结合,在保护数据隐私的同时发挥AI的强大功能。

相关研究还展示了FHE与多方计算(MPC)的混合模型在深度神经网络中的应用,特别是在处理非算术函数时的创新突破。Graepel、Lauter和Naehrig在2012年发表的ML Confidential论文中,首次提出了将同态加密应用于机器学习计算委托的方案,为后续研究奠定了基础。

这些开创性工作不仅证明了传统机器学习方法在加密约束下的可行性,更为安全、隐私保护的机器学习算法发展提供了重要参考。

FHEML技术解析

基于全同态加密的机器学习(FHEML)通过利用FHE方案,使得机器学习算法能够直接在加密数据上进行计算。这项技术与零知识机器学习(ZKML)形成互补,前者专注于数据隐私保护,后者则确保算法执行的正确性。

FHEML的核心优势在于其能够保持加密数据计算结果与明文数据计算结果的一致性。这一特性为机器学习在敏感数据场景中的应用提供了全新可能,包括机密计算、加密训练和私人推理等重要领域。

主流FHEML开发框架

目前FHEML领域虽然尚未形成统一标准,但已经涌现出多个具有代表性的开发框架。Zama开发的Concrete-ml库建立在底层TFHE编译器之上,支持将Python代码编译为FHE电路,并提供了与scikit-learn兼容的API接口。

OpenMined社区推出的Tenseal专注于张量同态运算,基于微软SEAL库构建,通过Python接口提供了高效的加密张量操作能力。PySyft则整合了Tenseal的同态加密功能,并引入CKKS张量支持实数运算,为隐私保护机器学习提供了完整的解决方案。

TF Encrypted专为TensorFlow生态系统设计,通过Keras API提供加密机器学习功能,大大降低了加密机器学习的应用门槛。

FHEML的典型应用场景

安全外包计算

借助FHE技术,数据所有者可以将加密数据安全地交由第三方进行处理,在保证数据隐私的同时获得所需计算结果。

隐私保护推理

FHEML支持加密推理服务,确保用户请求的推理过程和数据全程加密,只有授权用户才能解密获取最终结果。

加密数据训练

企业可以利用FHEML技术在加密数据上训练模型,在保护敏感信息的同时获得有价值的业务洞察,支持更安全的决策制定。

声明:文章不代表CHAINTT观点及立场,不构成本平台任何投资建议。投资决策需建立在独立思考之上,本文内容仅供参考,风险 自担!转载请注明出处:https://www.chaintt.cn/12648.html

CHAINTT的头像CHAINTT
上一篇 2025年7月9日 下午8:15
下一篇 2025年7月9日 下午8:36

相关推荐

  • Nesa Network是什么 区块链技术解析与功能介绍

    Nesa Network:去中心化AI区块链平台 Nesa Network是专为AI推理设计的Layer1区块链,通过等变加密(EE)、零知识机器学习(ZKML)和可信执行环境(TEE)实现链上隐私保护计算。其创新架构包含AI虚拟机(AIVM)和混合分片技术,支持开发者直接部署容器化AI模型到去中心化存储(IPFS/Arweave)。平台采用$NES代币经济模型,用于支付交易费用、质押治理及激励矿工,代币分配中27.2%用于研发,20%面向公开市场。创始团队由Meta、NASA前AI专家组成,旨在解决中心化AI系统的数据隐私和单点故障问题,目前正通过NESBridge协议推进跨链互操作性,并规划建设AI Kernel市场扩展应用生态。

    2025年10月13日
    6600
  • 什么是 Brave (BAT) 浏览器及其原生代币 BAT 的完整指南

    区块链广告革新:Brave浏览器重塑数字广告生态 Brave浏览器通过区块链技术构建去中心化广告市场,采用BAT代币奖励用户注意力,实现广告商、内容创作者与用户的利益循环。其隐私保护技术ANONIZE算法结合零知识证明,有效解决广告欺诈和隐私泄露问题。目前月活用户达5820万,70%广告收入用于BAT回购分配。2023年重点布局NFT合作、自助广告系统、链上支付及游戏领域,推动BAT在Web3生态的实用价值扩展。

    2025年7月27日
    10700
  • AI 加密项目投资策略与市场前景分析

    文章探讨了加密货币与人工智能结合的投资策略,将相关项目分为五类:AI主题Meme代币(短期投机)、社交媒体AI代理(交互式但高风险)、去中心化GPU(如IO.NET)、AI生态系统市场(如Fetch.AI)和AI去中心化操作系统(如0G Lab)。作者强调需区分项目价值主张,对Meme代币采取赌博式短线操作,而对技术型项目如0G Lab则长期布局,同时分享了节点运营等实操经验。

    2025年11月28日
    4600
  • 机器学习驱动的加密货币价格预测:LSTM与Transformer模型对比

    加密货币市场的高波动性为投资者带来机会与风险,机器学习技术成为价格预测的关键工具。文章重点对比LSTM和Transformer模型在加密货币预测中的表现,指出LSTM擅长捕捉短期价格变动,而Transformer结合社交媒体情绪数据时效果更优。同时探讨了链上数据、社交媒体情绪和宏观经济指标等多元数据整合方法,并分析黑天鹅事件对模型稳定性的影响。开源项目案例展示了LSTM模型的实际应用流程,最后强调数据预处理、模型验证和合规风险对提升预测稳定性的重要性。

    2025年7月22日
    10300
  • io.net区块链项目深度研究报告与SEO优化分析

    转发原文标题《MIIX Capital: io.net项目研究报告》 1、项目情况 1.1 业务概要 io.net是去中心化的 GPU 网络,旨在为 ML(机器学习) 提供计算。通过组装来自独立数据中心、加密货币矿工和 Filecoin 或 Render 等项目的 100 万多个 GPU 来获取计算能力。 它的目标是将 100 万个 GPU 组合到 DePIN(去中心化物理基础设施网络)中,打造一个企业级、去中心化的分布式计算网络,通过汇聚全球闲散的网络计算资源(目前主要是GPU),为人工智能工程师们提供价格更低、更易获得、更灵活适配的网络计算资源服务。 对于用户来说,它就相当于一个去中心全球闲散GPU资源的集市,让人工智能工程师或团队可以在这里按照他们的需求定制化搭配和购买所需的GPU计算服务。 1.2 团队背景 Ahmad Shadid 是创始人兼首席执行官,此前是 WhalesTrader 量化系统工程师。 Garrison Yang 是首席战略官兼首席营销官,此前是 Ava Labs 增长与战略副总裁。 Tory Green 是首席运营官,此前是 Hum Capital 首席运营官、Fox Mobile Group 企业发展与战略总监。 Angela Yi 是商务拓展副总裁,毕业于美国哈佛大学,负责规划并执行销售、伙伴关系和供应商管理等关键战略。 2020 年Ahmad Shadid 为机器学习量化交易公司 Dark Tick 构建 GPU 计算网络时,因为交易策略接近于高频交易,所以需要大量的算力,云服务厂商高昂的GPU服务费用成为了他们的难题。 对算力的巨大需求以及所面临的高昂成本促使他们他们决定去做去中心化分布式计算资源这件事,随后又在 Austin Solana Hacker House 获得关注度。因此,io.net属于该团队从自身面临的痛点出发,提出解决方案并进行业务落地和拓展。 1.3 产品/技术 市场用户面临的问题: 可用性有限,使用 AWS、GCP 或 Azure 等云服务访问硬件通常需要数周时间,而且市场上流行的 GPU 模型通常不可用。 选择余地很少,如在 GPU 硬件、位置、安全级别、延迟等方面用户几乎没有选择余地。 成本较高:获得优质 GPU 非常昂贵,每月很花费数十万美元用于训练和推理。 解决方案: 通过聚合未充分利用(例如独立数据中心、加密矿工以及 Filecoin、Render 等加密项目)的 GPU ,把这些资源整合到DePIN 中,使工程师能够在系统中获得大量计算能力。它允许 ML 团队跨分布式 GPU 网络构建推理和模型服务工作流程,并利用分布式计算库,来编排和批量训练作业,以便可以使用数据和模型并行性在许多分布式设备上并行化。 此外,io.net 利用具有高级超参数调整的分布式计算库来检查最佳结果、优化调度并简单地指定搜索模式。它还使用开源强化学习库,该库支持生产级、高度分布式的 RL (强化学习)工作负载以及简单的 API。 产品组成: IO Cloud,目的是部署和管理按需来分配去中心化的 GPU 集群,与IO-SDK无缝集成,提供扩展人工智能和Python应用程序的全面解决方案。可提供无限的计算能力,同时简化了GPU/CPU资源的部署和管理。 IO Worker,为用户提供一个全面且用户友好的界面,通过直观的网络应用程序高效管理他们的GPU节点操作。该产品的范围包括与用户账户管理、计算活动监控、实时数据显示、温度和功耗跟踪、安装辅助、钱包管理、安全措施和盈利能力计算相关的功能。 IO Explorer,主要为用户提供全面统计数据和 GPU 云各个方面的可视化图,让用户轻松即时监控、分析和了解io.net网络的复杂细节,提供对网络活动、重要统计数据、数据点和奖励交易的全面可见性。 产品特点: 去中心化计算网络:io.net 采用去中心化的计算模式,将计算资源分布在全球各地,从而提高了计算效率和稳定性。 低成本访问:相较于传统的集中式服务,io.net Cloud 提供了更低的访问成本,使更多的机器学习工程师和研究人员能够获得计算资源。 分布式云集群:平台提供了一个分布式的云集群,用户可以根据自己的需求选择合适的计算资源,并将任务分配到不同的节点上进行处理。 支持机器学习任务:io.net Cloud专注于为机器学习工程师提供计算资源,使他们能够更轻松地进行模型训练、数据处理等任务。 1.4 发展路线图 https://developers.io.net/docs/product-timeline 根据io.net白皮书公布的信息,项目产品的路线图是:2024年1月-4月,V1.0全面发布,致力于io.net生态系统的去中心化,使其能够实现自我托管和自我复制。 1.5 融资信息 根据公开新闻信息显示,2024年3月5日,io.net对外宣布完成 3000 万美元 A 轮融资,Hack VC 领投,Multicoin Capital、6th Man Ventures、M13、Delphi Digital、Solana Labs、Aptos Labs、Foresight Ventures、Longhash、SevenX、ArkStream、Animoca Brands、Continue Capital、MH Ventures、Sandbox Games等参与。【1】值得注意的是,这轮融资后,io.net整体估值10亿美元。 2、市场数据 2.1 官方网站 从2024年1月 至 2024年3月的官网数据看,总访问量为5.212M,月均访问1.737M,跳出率为18.61%(较低),各区域用户访问数据较均匀,且直接访问和搜索访问占比超过80%,可能说明访问用户数据中脏数据占比不高,他们对io.net有基本了解,并且愿意进一步了解和在网站进行交互。 2.2 社媒社群 3、竞争分析 3.1 竞争格局 io.net的核心业务是跟去中心AI算力有关,它最大的竞争对手就是以AWS、Google Cloud、微软智能云业务(Azure为代表)为代表的传统云服务厂商。根据国际数据公司(IDC)、浪潮信息和清华大学全球产业研究院联合编制的《2022–2023年全球算力指数评估报告》,全球人工智能计算市场规模预计将从2022年的195亿美元增长到2026年的346.6亿美元。【2】 对比全球主流云计算厂商的销售收入:2023年AWS云服务销售收入90.8亿美元,Google Cloud销售收入33.7亿美元,微软智能云业务销售收入96.8亿美元。【3】三者市场份额占到全球66%左右,同时这三家巨无霸公司市值均在万亿美元以上。 https://www.alluxio.io/blog/maximize-gpu-utilization-for-model-training/ 与云服务厂商高额收入形成鲜明对比的是,如何提升GPU利用率成为一个焦点问题。根据AI infrastructure的一项调查显示,大多数GPU资源被低估利用 — — 53%左右的人认为51~70%的GPU资源被低估利用,25%的人认为利用率达到85%,只有7%的人认为利用率超过85%。对io.net来说,对云计算的巨大需求以及GPU资源有效利用不足的问题是其面临的市场机会。 3.2 优势分析 https://twitter.com/eli5_defi/status/1768261383576289429 io.net最大的竞争优势体现在生态位优势或者说先发优势上。根据官方提供的数据:目前io.net拥有的GPU集群总量大于40K,CPU总量大于5600,Woker Nodes大于69K,部署10,000GPU的时间小于90s,价格比竞争对手便宜90%,估值10亿美元。io.net不仅为客户提供了相比起中心化云服务提供商 1–2 折的低价和无需许可的即时上线服务,更为算力提供者通过即将推出的 IO 代币提供了额外的启动激励,共同助力达成连接 100 万 GPU 的目标。 另外,与其他 DePIN 计算项目相比,io.net专注于 GPU 计算能力,其 GPU 网络的规模已经领先于同类项目超 100 倍。io.net还是区块链界第一个将最先进的 ML 技术栈(如 Ray 集群、Kubernetes 集群和巨型集群)融入 GPU DePIN 项目并投入大规模实践的,这使得其不仅在 GPU 数量上,更在技术应用和模型训练的能力上处于领先地位。 随着io.net 的不断发展,如果能够把GPU容量提升到与中心化云服务商竞争的 500,000 个全网并发 GPU,将可以用更低的成本提供与 Web 2 相似的服务,并有机会通过与主要 DePIN 和 AI 玩家(包括 Render Network、Filecoin、Solana、Ritual 等)建立的紧密合作关系,逐步确立其在该领域的核心地位成为去中心化 GPU 网络的龙头和结算层,为整个 Web 3xAI 生态带来活力。 3.3 风险和问题 io.net是一个新兴的,与Web3深度结合的计算资源整合与分发平台,并且所涉及的业务与传统的云服务厂商高度重合,这让它在技术和市场方面都面临着位置的风险和阻碍。 技术安全风险, io.net 作为新兴平台,并没有经历过大规模的应用测试,也没有体现出防范和应对恶意攻击的能力。面对巨量的算力资源接入、分发和管理并没有相应的经验或实践验证,容易出现技术产品常见的兼容性、健壮性、安全性等问题。并且一旦出现问题,很可能对 io.net 是致命的,因为客户更在意自己的安全和稳定,且不愿意为这些买单。 市场拓展缓慢, io.net与传统的云服务厂商高度重合,这让它必须与传统的AWS、Google Cloud、Alicloud等直接竞争,甚至与二线或三线的服务商直接竞争,尽管io.net有着更优惠的成本,但它面向B类客户的服务体系和市场体系是刚刚开始,这与现有Web3行业的市场运营有着很大的差别,所以,在目前来看它在市场拓展方面的进度并不理想,这很可能直接影响其项目估值和代币的市值表现。 最新安全事件 4月25日 io.net 创始人兼 CEO Ahmad Shadid 在发推称,io.net 元数据 API 遭遇安全事件,攻击者利用用户 ID 到设备 ID 的可访问映射,导致未经授权的元数据被更新,此漏洞并未影响 GPU 访问,但确实影响了前端向用户显示的元数据。io.net 不收集任何 PII,也不会泄露敏感的用户或设备数据。 Shadid 表示,io.net 系统设计允许自我修复,不断更新每个设备,帮助恢复任何错误更改的元数据。鉴于此事件,io.net 加快了 OKTA 的用户级身份验证集成的部署,该部署将在接下来 6 小时内完成。此外,io.net 还推出 Auth0 Token 进行用户验证,阻止未经授权的元数据更改。数据库恢复期间,用户将暂时无法登录。所有正常运行时间记录均不受影响,并且这不会影响供应商的计算奖励。 4、代币估值 4.1 代币模型 io.net 代币经济模型在创世时将拥有 5 亿枚 IO 的初始供应量,分为五个类别:种子投资者(12.5%)、A 轮投资者(10.2%)、核心贡献者(11.3%)、研发与生态系统(16%)以及社区(50%)。随着 IO 的发行以激励网络增长和采用,将在 20 年内增长至 8 亿枚的固定最大供应量。 奖励采用通缩模型,从第一年的 8% 开始,每月减少1.02%(每年约 12%),直到达到8亿枚 IO上限。随着发放奖励,早期支持者和核心贡献者的份额将持续减少,在所有奖励分配完成后,社区的份额将增长到 50%。【4】 其代币功用包括给予 IO Worker 分配激励、奖励 AI 与 ML 部署团队持续使用网络、平衡部分需求和供给、为 IO Worker 计算单位定价以及社区治理等。 io.net 为了避免因 IO 币价波动产生的支付问题,专为开发了稳定币 IOSD,与美元挂钩。1IOSD 始终等于 1 美元。IOSD 只能通过销毁 IO 来获得。此外,io.net 正考虑部分机制来改善网络功能。例如,可能允许 IO Workers 通过抵押原生资产来提高被租用的概率。在这种情况下,他们投入的资产越多,他们被选择到的概率就越大。此外,质押原生资产的人工智能工程师可以优先使用高需求的 GPU。 4.2 代币机制 IO 代币主要用于需求方和供应方两大群体,对于需求方而言,每个计算作业均以美元定价,网络将保留付款直至作业完成。一旦节点运营商以美元和代币配置其奖励份额,所有美元金额将直接分配给节点运营商,而分配给代币的份额将用于燃烧 IO 币。然后,在该期间作为计算奖励铸造的所有 IO 币都会根据其优惠券代币(计算积分)的美元价值分配给用户。 对于供应方而言,包括可用性奖励与计算奖励。其中,计算奖励是对于提交到网络的作业,用户可以选择时间偏好「以小时为单位部署集群的持续时间」,并从 io.net 定价预言机接收成本估算。可用性奖励方面,则是网络将随机提交小型测试作业,以评估哪些节点定期运行并且能够很好地接受来自需求方的作业。 值得一提的是,不论是供应方还是需求方,都设置有一套声誉系统,根据计算性能、对网络参与度来累计分数,获得奖励或优惠。 除此以外,io.net 还设置生态增长机制,包括质押、邀请奖励和网络费用。IO 币持有者可以选择将其代币 IO 质押给节点运营商或用户。一旦质押,质押

    2025年10月16日
    6300

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

风险提示:防范以"数字货币""区块链"名义进行非法集资的风险